History of MHC - 1901 - 1970

Snapshots in the history of MHC - 1901 - 1970

1901

20th Century Discoveries

The turn of the 20th century serves as a landmark due to two important events:

1. recognition of Gregory Mendel’s work of 1867 and his theory of inheritance, and
2. discovery in 1901 of the blood group system on erythrocytes by Karl Landsteiner, an Austrian scientist.
 This set the pace for search of a similar polymorphic system on leukocytes.

1920

Discovery of the MHC
During the first decade of the 20th century, two important advances were made that paved the way to the discovery of the MHC in later years:

1. Loeb and Tyzzer discovered that the resistance and susceptibility to transplantable tumors are genetically determined by at least 15 genes.

2. Inbred strains of mice were developed by Little (DBA/1, DBA/2, C57BL), Bagg (BALB/c) and Strong (CBA and C3H) that facilitated the understanding of transplant biology.

1930

1930 Nobel Prize
In 1930, Karl Landsteiner was awarded the Nobel Prize in Medicine and Physiology for the discovery of the human ABO blood system.

Nobel Prize 1930 – The Nobel Prize in Physiology or Medicine 1930 was awarded to Karl Landsteiner “for his discovery of human blood groups.”

1936

Antigen II
Peter A. Gorer in 1936 discovered the antigen II on mouse erythrocytes ([Br J Exp Pathol 17:42-50, 1936](https://doi.org/10.1016/S0007-1265(36)87277-X)) and the very next year he reported that this antigen is identical to the gene controlling susceptibility to a transplantable sarcoma ([J Pathol Bacteriol 41:691-696, 1937](https://doi.org/10.1002/path.3170410510)).

1944

Allografts

In 1944, Peter Medawar ([J Anat 78:176, 1944](https://doi.org/10.1016/S0021-8784(44)87181-6)) studying skin transplants in rabbits demonstrated that rejection of homografts (now named allografts) is the result of a specific and systemic immune response.
In 1948, Gorer, Lyman and George Snell published a landmark paper (Proc Royal Soc B 4:919, 1948) demonstrating that antigen II was identical to the antigen present on tumors of two strains of mice and was the major factor controlling graft acceptance. The gene coding for this antigen was named H₂, where ‘H’ stands for Histocompatibility. The H-2 locus therefore came to be recognized as the Major Histocompatibility Antigen System.

1954

Leuco-agglutinins
Jean Dausset in 1950s (Vox Sang 4:190, 1954; Acta Haematol 20: 156, 1958; and 20:185, 1958) was the first to describe antibodies to platelets in the sera of multitransfused patients that were able to agglutinate donor leukocytes. He referred to them as leuco-agglutinins.

1958

MAC – HLA-A2

Jean Dausset (1916-2009) discovered the first HLA antigen in 1958, which he named “MAC”, the three letters based on the first names of three of his volunteers. Later it came to be recognized as HLA-A2.

Anti-leukocyte antibodies

Rose Payne in the US (J Clin Invest 37:1756, 1958) and Jon van Rood in the Netherlands (Nature)
151:1735, 1958) working independently reported the presence of anti-leukocyte antibodies in the sera of pregnant women. This set the momentum for the availability of mono or oligospecific HLA antisera to determine HLA antigens in an individual.

1960

MHC immune responses

In the 1960s, studies done by Baruj Benacerraf and colleagues (Levine et al. J Exp Med 118:953, 1963) and Hugh McDevitt and coworkers (J Exp Med 126:969, 1967), amongst others, revealed that the MHC genes controlled specific immune responses through what they called Immune Response genes (Ir genes).

Nobel Prize - 1960
In 1960, Peter Medawar received the Nobel Prize for his pioneering studies on tissue transplantation and immunological tolerance. The Prize was shared with McFarlane Burnet who postulated the Clonal Selection Theory of Acquired Immunity.

Nobel Prize 1960 – The Nobel Prize in Physiology or Medicine 1960 “for discovery of acquired immunological tolerance.”

1963

C4 component of complement
In 1963, Shrefler and Owen (Genetics 48:9, 1053) discovered a mouse serum protein whose levels were genetically determined by genes located on the H-2 loci. They called it ‘Ss’, later identified as the C4 component of complement.

1964

MHC Workshops

In 1964, Bernard Amos organized the First International Histocompatibility Workshop (IHWS) at Duke University, North Carolina, USA, where participants compared various techniques for the detection of human leukocyte antigens. This led to the start of a very productive international collaborative program, which contributed significantly to further define the HLA loci with their multiple alleles. It also discussed the methods to be used for the detection of HLA alleles, and paved the way for studies on the anthropological significance of HLA polymorphism, clinical meaning of HLA and disease.
associations, and influence of donor-recipient HLA matching and antibody determination in organ and hematopoietic stem cell transplantation. Seventeen such workshops have already been organized, while the 18th IHWS is planned for May 2021 in Amsterdam.

Complement Dependent Cytotoxicity (CDC) Assay

In 1964, Paul Terasaki and John McClelland (*Nature* 204:998, 1964) introduced the microlymphocytotoxicity test, known as complement dependent cytotoxicity assay or simply CDC,
which became the standard serological assay for HLA typing and cross-matching in clinical tissue transplantation.

MHC polymorphisms

<table>
<thead>
<tr>
<th>Subject no.</th>
<th>Sex</th>
<th>Observed/standard weight ratio</th>
<th>Before exercise</th>
<th>Immediately after exercise</th>
<th>Increase</th>
<th>After 30 minutes’ rest</th>
<th>Fall after rest</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>190</td>
<td>1.5</td>
<td>2.4</td>
<td>0.9</td>
<td>2.1</td>
<td>0.3</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>152</td>
<td>1.9</td>
<td>2.6</td>
<td>0.7</td>
<td>2.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>238</td>
<td>1.1</td>
<td>1.4</td>
<td>0.3</td>
<td>1.4</td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>200</td>
<td>0.9</td>
<td>0.9</td>
<td>0.0</td>
<td>0.9</td>
<td>0.0</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>1.35</td>
<td>1.82</td>
<td>0.47</td>
<td>1.75</td>
<td>0.07</td>
<td></td>
</tr>
</tbody>
</table>

Also in 1964, Frank Lilly and colleagues *(Lancet 2(7371):1207, 1964)* reported an association between H-2 and susceptibility to viral leukemogenesis in the mouse system. This was the first publication of a possible association of MHC polymorphisms and disease susceptibility.

1967

Mixed Lymphocyte Culture (MLC) reaction

In 1967, Fritz Bach and Bernard Amos reported that HL-A genes control the Mixed Lymphocyte Culture (MLC) reaction.
Hodgkin’s Disease

The first report of an association between HLA and a human disease was by Amiel in 1967 (Histocompatibility Testing p79, 1967), who published a weak association of HLA-B5, B15 and BW35 with Hodgkin’s disease.

1968

Class I alpha Chain
Class I α chain was first isolated in 1968 by Mann et al (Nature 217: 1180, 1968) and Nathenson and Shimada (Transplantation 6:662, 1968).

Beta 2-Microglobulin

![Diagram of the overall structure of immunoglobulin G illustrating the domain hypothesis (1, 2). Light chain (V_{L}, C_{L}) and heavy chain (V_{H}, C_{H1}, C_{H2}, and C_{H3}) domains are denoted by circles; the dyad axis is indicated by ø. Each domain is connected to the succeeding domain by a less tightly folded region of the polypeptide chain. V-region domains mediate antigen-binding functions, while C-region domains mediate effector functions.](image-url)
β2-microglobulin was first isolated by Bergard and Bearn (J Biol Chem 243:4095, 1968) from the urine of patients with cadmium-induced renal tubular damage. The complete protein sequence was published in 1972 by Peterson et al. (Proc Natl Acad Sci USA 69:1697, 1972) indicating that it belonged to the Ig superfamily.

HLA Matching

HLA Antigens
Kissmeyer-Nielsen et al. (*Nature* 219:1116, 1968) defined the first series of HLA antigens assigned to the HLA-A and B loci.

HLA Nomenclature Committee

In 1968, the World Health Organization (WHO) sponsored the establishment of an HLA Nomenclature Committee, which is still active and continues to revise the system.

1969

HLA Compatibility
In 1969, Ceppellini et al. (Transplant Proc 1:385, 1969) provided experimental evidence in man that indicated that the survival of skin grafts depended on HLA compatibility between the donor and the recipient.

Hyperacute Rejection
Patel and Terasaki (N Engl J Med 280:735, 1969) demonstrated that the presence of preformed cytotoxic antibodies in recipients of renal grafts was associated with hyperacute rejection.

1970

HLA-C locus
Sandberg et al. (Histocompatibility Testing p163, 1970) assigned the first serologically defined antigens to the HLA-C locus.

Two loci, K and D
Erik Thorsby (Eur J Immunol 1:57, 1970) and Snell et al. (Transplant Proc 3:183, 1971) independently proposed that the known H-2 genes were encoded by two loci, K and D.

De novo Donor-specific Antibodies

Jeannet et al., (N Engl J Med 282:111, 1970) reported that the development of de novo donor-specific antibodies early after kidney transplantation was associated with severe vascular rejection and poor allograft survival.

Acknowledgement
History kindly supplied by Dr Luis Garcia - Immunopaedia Steering Committee and Narinder K Mehra - All India Institute of Medical Sciences

Luis F García
Emeritus Professor
Grupo de Inmunología Celular e Inmunogenética
Universidad de Antioquia
Medellín, Colombia
IUIS Education Committee
Immunopaedia Steering Committee

Narinder K Mehra
Ex-head, Department of Transplant Immunology and Immunogenetics
All India Institute of Medical Sciences
New Delhi, India